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ABSTRACT 
The global methods of generalized differential quadrature (GDQ) and generalized integral quadrature 
(GIQ) are applied to solve three-dimensional, incompressible, laminar boundary layer equations. The 
streamwise and crosswise velocity components are taken as the dependent variables. The normal velocity 
is obtained by integrating the continuity equation along the normal direction where the integral is 
approximated by GIQ approach with high order of accuracy. All the spatial derivatives are discretized by 
a GDQ scheme. After spatial discretization, the resultant ordinary differential equations are solved by the 
4-stage Runge-Katta scheme. Application of GDQ-GIQ approach to a test problem demonstrated that 
accurate numerical results can be obtained using just a few grid points. 
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INTRODUCTION 

The boundary layer approximation is a useful mathematical model for many engineering 
problems. It can provide a good estimate of wall shear stress distribution for an attached flow. 
The simulation of the flow with a small separation region can be carried out by the concept 
of viscous-inviscid interaction, where the calculation of the viscous part is obtained by the 
boundary layer computation. The approach of viscous-inviscid interaction can greatly reduce 
the computational effort compared with a Navier-Stokes solver. For a numerical solution of 
boundary layer equations, low order finite difference schemes4-10 are usually used to discretize 
the spatial derivatives, which can give accurate numerical results by using a large number of 
grid points. Boundary layer equations can be solved when they are expressed in physical 
coordinates or in transformed coordinates. Generally, the transformed form is favourable because 
it can remove the singularity occurring at the leading edge of the surface. Using transformed 
coordinates, most researchers prefer to use the stream function as the dependent variable. The 
major advantage of this is that the continuity equation can be dropped from the solution 
procedure as it is automatically satisfied. Accordingly, the order of the partial differential equations 
is increased by one, which may create difficulties in dealing with the boundary conditions. 
Another drawback is that the extension of the two-dimensional (2D) method to the three-
dimensional (3D) case is not straightforward since the stream function does not exist for 3D 
cases. Some other researchers favour the use of the primitive variable (velocity) as the dependent 
variable enabling 2D methods to be extended to the 3D case directly. The difficulty then is the 

0961-5539/96/020061-15$2.00 
© 1996 MCB University Press Ltd 

Received July 1994 
Revised January 1995 



62 C. SHU ET AL. 

coupling of the continuity equation with the momentum and energy equations. The continuity 
equation is usually solved by applying a finite difference scheme. The reason for not using the 
integral form of the continuity equation is that the normal velocity obtained by integrating the 
equation along the normal coordinate with the use of classical integral quadrature is less accurate 
because some integral domains do not contain sufficient grid points. 

As will be shown in this paper, the global method of generalized integral quadrature (GIQ) 
can provide a promising way to obtain the normal velocity accurately by an explicit formulation 
derived from the integration of the continuity equation in the normal direction. GIQ approximates 
the integral over a part of the whole domain by a linear combination of all the functional values 
in the whole domain. Thus, the determination of the normal velocity at any mesh point involves 
all the functional information in the normal coordinate direction and has the same order of 
accuracy for all mesh points along the normal direction. The spatial derivatives of the boundary 
layer equations will be discretized by the global method of generalized differential quadrature 
(GDQ). Application of GDQ scheme to solve incompressible Navier-Stokes equations1,2 

demonstrated that accurate numerical results can be obtained using a considerably small number 
of grid points. Both GDQ and GIQ methods are based on the analysis of a high order polynomial 
approximation and the analysis of a linear vector space. Details of GDQ and GIQ will be given 
subsequently. Their application to solve a test three-dimensional laminar boundary layer problem 
will be demonstrated in detail, where transformed coordinates are used, and the velocity 
components are taken as the dependent variables. 

GOVERNING EQUATIONS 
The three-dimensional, incompressible, laminar boundary layer flows in the Cartesian coordinate 
system will be chosen to demonstrate the application of GDQ-GIQ method. For simplicity, the 
following unsteady equations are used as the governing equations. The steady state solution can 
be easily obtained by using an explicit scheme. 
Continuity 

(1) 

x-M omentum 

(2) 

z-Momentum 

(3) 

where x is the coordinate in the streamwise direction, ζ is the coordinate in the crosswise direction, 
y is the coordinate in the normal direction, and u, v, w are the velocity components in the 
x, y, z directions, respectively. The terms involving spatial derivatives of p, the pressure, represent 
the pressure gradient imposed on the boundary layer by the inviscid flow, which can be given by, 

(4) 

(5) 
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where Ue and We represent the inviscid velocity components in the χ and ζ directions, respectively. 
The boundary conditions for (1)-(3) are given by, 

(6a) 
(6b) 

where δ is the boundary layer thickness. The boundary layer equations (1)-(3) can be solved in 
the Cartesian coordinate system. However, their solutions are singular at the leading edge of 
the surface, leading to the need of some specific treatment. This drawback can be removed by 
using the transformed coordinates. Using the following transformation 

the boundary layer equations (1)-(3) are transformed to, 

(7) 

(8) 

(9) 

where, 

Accordingly, (6) is transformed to, 
(10a) 
(10b) 

The solution of the system given by (7)-(9) requires initial conditions at ξ = 0 and ζ = 0. Substituting 
ξ = 0 into (7)-(9) gives, 

(11) 

(12) 

(13) 
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The boundary conditions for (11)-(13) are the same as given by (10). Equations (11)-(13) are the 
Blasius boundary layer equations. Their solution gives the initial condition at ξ = 0. In some 
problems, the initial condition at ζ = 0 can be given by the symmetry condition. On the symmetrical 
plane, both the cross-flow velocity component in the boundary layer, w, and the inviscid cross-flow 
velocity component, We, are zero. This leads the z-momentum equation to be singular on the 
symmetrical plane. However, differentiation with respect to z will yield a non-singular equation. 
As a consequence, (7)-(9) can be simplified, at ζ = 0, to, 

(14) 

(15) 

(16) 

where 

Equations (14)-(16) are subjected to the following boundary conditions, 

Solution of (14)-(16) provides the initial condition at ζ = 0. 

NUMERICAL TECHNIQUES 

Generalized differential quadrature (GDQ) 
The global method of GDQ was developed by Shu and Richards1,2 based on the work of 

Bellmann et al.3. It approximates any spatial derivative at a discrete point by a linear weighted 
sum of all the functional values in the whole domain. In GDQ, the determination of weighting 
coefficients for the derivative discretization is based on the analysis of a high order polynomial 
approximation and the analysis of a linear vector space. The weighting coefficients of the first 
order derivative is given by a simple algebraic formulation while the weighting coefficients of 
the second and higher order derivatives are given by a recurrence relationship. For details, see 
References 1 and 2. Some basic results for the three-dimensional case are described as follows. 
For a smooth function f(x, y, z), GDQ discretizes its nth order derivative with respect to x, the 
mth order derivative with respect to y, and the lth order derivative with respect to z, at the grid 
point (xi, yj, zk) as, 

(18a) 

(18b) 

(18c) 

for i = 1, 2, ..., N; j = 1, 2, ..., M, k = 1, 2, ..., L, 
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where Ν, Μ, L are the number of grid points in the x, y and ζ direction, respectively, w(n)
iq, (m)

jq, 
are the weighting coefficients to be determined as follows, 

weighting coefficients for the first order derivative 

(19a) 

(19b) 

(19c) 

where 

weighting coefficients for the second and higher order derivatives 

(20a) 

(20b) 

(20c) 

When j = i, the weighting coefficients are given by, 

(21a) 

(21b) 

(21c) 

It is obvious from above equations that the weighting coefficients of the second and higher 
order derivatives can be completely determined from those of the first order derivatives. As 
shown in Reference 1, when some specific grid point distributions are used, (19) can be simplified. 
Actually, when the coordinates of grid points are chosen as the roots of the Nth order Chebyshev 
polynomial, GDQ provides exactly the same results as given from the Chebyshev collocation 
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method11. The GDQ method can be considered as a version of the classical spectral method 
since both methods are based on the high order polynomial approximation. That is, the solution 
of a partial differential equation is approximated by a (N - l)th order polynomial (N is the 
number of grid points). The roots of the approximated polynomial are the coordinates of grid 
points. In the spectral method, the solution of a partial differential equation is usually 
approximated by an orthogonal polynomial such as the Chebyshev polynomial. Thus the 
coordinates of grid points (roots of the orthogonal polynomial) cannot be chosen arbitrarily. In 
the GDQ method, the coordinates of grid points are given in advance, then the high order 
polynomial is constructed by using the Lagrange interpolated polynomial which approximates 
the solution of a partial differential equation. When the coordinates of grid points are chosen 
to be the same, e.g. the roots of Chebyshev polynomial, the GDQ method and the classical 
spectral method provide exactly the same results. Thus we believe that the GDQ method is 
more flexible in application than the classical spectral method. For details of the classical spectral 
method, see References 12 and 13. The numerical experiment demonstrated that the grid with 
stretching near the boundary can give better accuracy of numerical results and faster convergence 
rate. 

When the functional values at all grid points are obtained, it is easy to calculate the functional 
values in the whole computational domain with high order of accuracy in terms of the polynomial 
approximation, i.e., 

(22a) 

(22b) 

(22c) 

(22d) 
where ri(x), sj(y), tk(z) are the Lagrange interpolation polynomials in the x, y and z directions, 
respectively. Equation (22) can be used to calculate the flow parameters at some specific points 
without losing accuracy. 

Generalized integral quadrature (GIQ) 
It is well-known that an integral of a function f(x) over a closed domain [a, b] can be 

approximated by 

(23) 

where ci is the weighting coefficient, xi is the coordinate of grid points in the domain [a, b]. 
There are a number of conventional rules such as low order Simpson's rule and Gauss-Legendre 
method to determine ci. Usually, the accuracy of numerical integration by these conventional 
rules depends on the number of grid points used in the integral domain. Thus if the integral 
domain contains only a few grid points, the resultant numerical integration may be less accurate. 
On the other hand, we may encounter some cases in practice where the function is smooth in 
a whole domain containing sufficient grid points when, however, only the approximation of 
numerical integration over a part of the whole domain is required. For this case, when the 
conventional rules are applied, the results of numerical integration may be less accurate since 
the integral domain does not contain sufficient grid points. As will be shown subsequently, the 
approach of generalized integral quadrature (GIQ) provides a promising way to approximate 
the integral of the function over a part of the whole domain with high order accuracy. 
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The GIQ is also developed based on the analysis of a high order polynomial approximation 
and the analysis of a linear vector space. If a function is smooth in the whole domain, it can be 
approximated by a high order polynomial in that domain. Then, the integral of the function 
over a part of the whole domain can be approximated by integrating the approximated high 
order polynomial over this part of the whole domain. As a result, this approximation involves 
all the functional values in the whole domain with high order of accuracy even though the 
integral domain contains only two points. As a general case, it is supposed that the integral of 
a smooth function f(x) over a part of the whole domain [a, b] is approximated by a linear 
combination of all the functional values in the whole domain with the form 

(24) 

Here Ν is the number of grid points in the overall domain [a, b]. When xi = a, xj = b, (24) reduces 
to a conventional numerical integral, that is, the integral domain is the whole domain containing 
all the functional values. Obviously, the key procedure to this approach is to determine the 
weighting coefficients. We will show that the weighting coefficients of GIQ can be easily obtained 
from those of the first order derivative in GDQ. 

In a similar fashion to the analysis in GDQ, the smooth function f(x) is approximated by a 
(N - l)th order polynomial, which constitues an N-dimensional linear vector space. If the 
Lagrange interpolation polynomials, rk(x), k = 1, 2, ..., N, are chosen as the base polynomials, 
cij

k can be determined by, 

(25) 

The expression of cij
k is very complicated. We will turn to another way to determine cij

k. Setting, 

(26) 

we see clearly that if f(x) is an (N - 1)th order polynomial, u(x) is an Nth order polynomial. It 
is supposed that f(x) is approximated by an (N — l)th order polynomial with the following form, 

(27) 

where a0, a1, ..., aN-1 are constants. Integrating (26) from a constant c to the variable χ and 
using (27), we obtain, 

(28) 

where, 

It is easy to show that F(x, c) constitutes an Ν dimensional linear vector space. One set of its 
base polynomials can be chosen as, 

(29) 
where rk(x) is the Lagrange interpolation polynomial. Similar to the GDQ approach, we can set, 

(30) 

for i = l, 2, ..., N, 
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where Fx(xi, c) is the first order derivative of function F(x, c) with respect to x at xi, and aij is 
the weighting coefficient, which can be determined using the same fashion as used in GDQ. 
Substituting (29) into (30) gives the weighting coefficients aij as, 

(31a) 

(31b) 

where w(1)
ij is the weighting coefficient of the first order derivative in GDQ. From (31), it is clear 

that c cannot be chosen to be the coordinates of grid points, xi. This condition can also be seen 
from (28). It is seen from (28) that, when c = xv there is no integral term involved. Thus no 
numerical method is needed to approximate the integral for c = xi. To derive formulations of 
numerical integration by GIQ, we write (30) as a vector form, 

Fx = AF (32) 
where, 

From (28), (26), F and Fx can also be written as, 

So equation (32) can be rewritten as, 
f=A· fI (33) 

Setting WI= A-1, equation (33) gives, 

(34a) 

(34b) 

Application of GDQ-GIQ approach to the boundary layer equations 
For the present numerical computation, we will apply the GDQ scheme to discretize all the 

spatial derivatives in the ξ, η, and ζ directions. The integral in the η direction derived from the 
integration of the continuity equation is approximated by GIQ scheme. The coordinates of grid 
points are chosen as, 

(35a) 

(35b) 

(35c) 
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where XL, ZL, η∞ are the length scales of the computational domain in the ξ, ζ and η directions 
respectively, and, 

It is noted that with the basic grid point distribution ηj is stretched towards the solid wall 
when α > 0. 

In the following, the discretization of (11)-(13) is chosen to demonstrate the numerical 
discretization of boundary layer equations by GDQ-GIQ approach. It is obvious from (11)-(13) 
that the solution F is exactly the same as the solution G. Thus, we only consider the solution 
of(11)-(12) which are the Blasius boundary layer equations. Application of GDQ to (12) gives, 

(36) 

The solution of V is obtained by integrating (11) along the η direction, which gives, 

(37) 

In practice, it is not usual to obtain V from (37) using a classical integral quadrature. The reason 
is that some integral domains do not contain sufficient grid points, which greatly reduces the 
accuracy of numerical solutions. However, as we introduced in the above section, GIQ is a 
global method, which approximates the integral of a function over a part of the whole domain 
by a linear combination of all the functional values in the whole domain with high order of 
accuracy. Thus application of the GIQ scheme to (37) can provide the normal velocity V at any 
mesh point in the η direction with the same order of accuracy. This gives, 

(38) 

The boundary conditions for (36), (38) are given by (10), which are easily implemented in the 
solution procedure. Similarly, the spatial derivatives in the boundary layer equations (15)—(16) 
on the symmetrical plane, and the general boundary layer equations (8)-(9) can be discretized 
by the GDQ scheme. After spatial discretization, the resultant ordinary differential equations 
for F and G are then solved by the 4-stage Runge-Kutta scheme (4th order accurate). The normal 
velocity V is determined by integrating the continuity (7) or (14) along the η direction. The 
resultant integral is then approximated by the GIQ scheme. 

RESULTS AND DISCUSSION 
The three-dimensional laminar flow past a flat plate with attached circular cylinder is chosen 
as a test example to validate the application of the GDQ-GIQ approach. The geometry of the 
problem is displayed in Figure 1. This flow problem has been extensively studied by many 
researchers4,5. The inviscid velocity components are given by, 

(39a) 

(39b) 
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where 

U∞ is a reference velocity, a is the cylinder radius, and x0 is the distance of the cylinder axis 
from the leading edge. For the present numerical simulation, these parameters are chosen as, 

and the mesh size used is 11 grid points in the ξ and ζ directions, and 12 grid points in the η 
direction. The computational domain in the z direction is chosen as between z = 0 and z = 0.20 m. 
Since the cylinder causes an adverse pressure gradient in front of itself, it is expected that the 
streamwise velocity will reverse in direction along a line in front of the cylinder. Since the adverse 
pressure gradient is a maximum along the plane of symmetry, the flow reversal in the boundary 
layer will first occur in the plane of symmetry. Thus the computational domain in the χ direction 
should be truncated before the separation point in the plane of symmetry because of the Goldstein 
singularity. 

The choice of constant c and initial solution 
From numerical experiments, it was found that numerical results are independent of the choice 

of the constant c used in (31) in the GIQ method when c is chosen as a small value, for example, 
|c| ≤ 0.1. When c is chosen as a large value, for example, |c| > 10, the choice of c has some effect 
on the accuracy of numerical results. For the Blasius boundary layer, when c is chosen as 20 
the computed wall shear stress is 0.33345 while the exact value is 0.33210. When c is chosen to 
satisfy |c| ≤ 0.1, all the computed wall shear stresses are 0.33215. Thus in the present study, we 
choose the constant c as 0.01. 

Since the three-dimensional boundary layer equation is parabolic in the χ and ζ directions, 
the initial solutions at x = 0 and z = 0 are required before the boundary layer equation is solved 
in the whole computational field. The initial solution at x = 0 can be obtained by solving (11)-(13) 
or (36), (38). Their solution represents the Blasius boundary layer solution. Compared with the 
exact results, our GDQ-GIQ results are obtained very accurately by using only 12 grid points 
in the η direction. For example, the computed wall shear stress (∂F/∂η)w by GDQ-GIQ is 0.33215 
while the exact value is 0.33210. The computed velocity profile of the Blasius boundary layer 
at x = 0 is almost identical to the exact solution. 
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After the solution at x = 0 is obtained, the initial solution at z = 0 (symmetrical plane) can be 
obtained by solving (14)-(16). For the solution of (14)-(16), the initial solution at x = 0 (Blasius 
boundary layer solution) is needed. For this case, a variety of numerical experiments have been 
conducted for the use of length scale in the χ direction, XL. It was found that the GDQ-GIQ 
approach is very sensitive to the Goldstein singularity. When the computational domain in the 
x direction is taken as 0 ≤ x ≤ 0.25970, the steady state resolution can be obtained very quickly 
(51.65 seconds CPU time on the IBM 3081) and accurately. But when the computational domain 
is taken as 0 ≤ x ≤ 0.25975, the computation will diverge after a few time steps. Thus it appears 
that the separation point in the plane of symmetry is between 0.25970 and 0.25975. This result 
is a little different from that given in Reference 4. The numerical results in Reference 4 showed 
that the separation point first starts at x = 0.25 in the plane of symmetry. 

Streamwise and crosswise velocity profiles 
Figures 2 and 3 show the non-dimensional streamwise and crosswise velocity profiles along 

the plane of symmetry. Due to the adverse pressure gradient, the steamwise velocity near the 
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wall decreases along the χ direction, and its first order derivative vanishes at the separation 
point. In the meantime, the crosswise velocity increases rapidly and has a value larger than that 
of the inviscid crosswise velocity. In the present study, the computational domain cannot include 
any separation region because of numerical instability. This also differs from the results in 
Reference 4, where the numerical computation can go through a flow reversal. It is our opinion 
that, like the parabolized Navier-Stokes equation, the three-dimensional boundary layer equation 
is unable to simulate the flow with a flow reversal in the streamwise direction because of the 
elliptic nature in separated region and separation point itself. 

The wall shear stress distribution 
After the initial solutions at x=0 and z=0 are obtained, the solution in the full flow field can 

be obtained by solving (7)-(9). In the present work, the GDQ scheme is applied in all the spatial 
directions, and the resultant ordinary differential equations for F, G are solved by the 4-stage 
Runge-Kutta scheme. 

The wall shear stress can be used to plot the wall shear lines. The wall shear lines are defined as, 

(40) 

which further gives, 
(41) 
(42) 

By choosing Δt = 0.01, χ0=0, z0 = i-(0.20/21), i— 1, 2,..., 20, we can plot 20 wall shear lines as 
shown in Figure 4. Accordingly, the streamlines of the inviscid flow which are defined as, 

(43) 

can be plotted from, 
(44) 
(45) 

http://streamvv.se
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Table 1 Comparison of present results with Cebeci's results 

X 
0 
0.0488 
0.0976 
0.1464 
0.1952 
0.2440 

Cebeci 
(∂F/∂η)w 
0.332066 
0.324951 
0.312821 
0.290184 
0.243524 
0.125972 

z = 0 

Present 
(∂F/∂η)w 
0.332150 
0.325421 
0.312826 
0.290724 
0.243864 
0.123785 

Cebeci 
(∂G/∂η)w 
0.332066 
0.702488 
1.124300 
1.524250 
2.250740 
3.126830 

Present 
(∂G/∂η)w 
0.332150 
0.702926 
1.124816 
1.623479 
2.247442 
3.119367 

z = 0.0488 

X 
0 
0.0488 
0.0976 
0.1464 
0.1952 
0.2440 

Cebeci 
(∂F/∂η)w 
0.322066 
0.325184 
0.314423 
0.295233 
0.259005 
0.181979 

Present 
(∂F/∂η)w 
0.331150 
0.325653 
0.314859 
0.295767 
0.259305 
0.177312 

Cebeci 
(∂G/∂η)w 
0.332066 
0.717599 
1.124210 
1.605920 
2.191930 
2.959350 

Present 
(∂G/∂η)w 
0.331150 
0.696219 
1.107046 
1.586223 
2.171279 
2.941173 

By choosing the same values of Δt, x0, z0 for the wall shear lines, we can then plot 20 streamlines 
of the inviscid flow which are displayed in Figure 5. Compared with Figure 4, it is obvious that 
the boundary layer flow has increased the movement in the crosswise direction in the front of 
the cylinder. 

Table 1 lists the computed values of (∂F/∂η)w and (∂G/∂η)w at some specific points. These 
values are obtained by using (22) to interpolate from the values at grid points without losing 
accuracy. Also included in Table 1 are the results of Cebeci5 which are obtained by the Keller-box 
finite difference scheme with Richardson extrapolation processing. The present numerical results 
agree well with Cebeci's results when x and z are close to 0. However, there are some differences 
between present results and Cebeci's results when x and z are far away from x = 0 and z = 0. 
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The numerical methods used in the present study and in Reference 5 are quite different. In 
the present work, GDQ scheme is applied in all the spatial directions, and the boundary layer 
solutions are obtained in the full computational field at the same time. Thus it can be expected 
that the boundary layer solutions at different stations have the same order of accuracy. 
Furthermore, the use of (22) does not affect the accuracy of numerical results since GDQ and 
GIQ are also based on the high order polynomial approximation. In Reference 5, the low order 
Keller-box finite difference scheme is used, and the solution is obtained by a space-marching 
technique. As we know, the low order method has higher numerical damping than the global 
method, which may affect the accuracy of numerical solutions at following stations. So, we may 
conclude that the present results are more accurate than the Cebeci's results. 

Applicability of GDQ-GIQ approach to a marching strategy 
Since the boundary layer equations are nonlinear equations, their solutions should be given 

by iterations. As shown above, a time-marching method was used in the present study. Compared 
with the classical low order space-marching method which requires iterations line by line, the 
time marching method requires iterations for the whole computational domain. However, since 
GDQ-GIQ uses much less grid points in the ξ and ζ directions than low order methods, the 
computational effort required is greatly reduced. The numerical advantages of GDQ-GIQ 
approach is that accurate numerical solutions can be obtained using a considerably small number 
of grid points. Its disadvantage is that it requires a great deal of virtual storage because it needs 
to store the solution for the whole computational domain. 

The GDQ-GIQ approach can be applied together with low order finite difference schemes to 
enable a space-marching strategy. For example, at point ( ξi-2/2, nj, ζk-1/2), when a second order 
finite difference scheme is used to discretize the derivatives in the ξ and ζ directions, GDQ 
scheme is used to discretize the derivatives in the η direction, and an implitic Euler difference 
scheme is used to discretize the time derivative, (8) or (9) can be reduced to a set of algebraic 
equations by linearizing the non-linear terms, 

A·U = b (46) 
where U = (ui,2,k, ui,3,k,..., ιιi,Μ-1,k)T, u can be F or G, A is a full matrix and b is a known vector. 
With (40) and the initial solutions, the boundary layer solution can be obtained by marching 
the solution station by station. The advantage of this strategy is that the virtual storage is greatly 
reduced. The disadvantage is that a large number of grid points in the ξ and ζ directions may 
be required for accurate numerical solutions. 

It seems that the above disadvantage can be improved by using the multi-domain GDQ-GIQ 
approach. The basic idea of this approach is to decompose the whole computational domain 
into several blocks. Then in each block, the GDQ method is applied in all the spatial directions. 
Since the boundary layer equation is parabolic in the x and y direction, its solution can be 
obtained by marching solution block by block without iteration. As shown in Figure 6, there 
are two ways to march the solution for 3D case. Before the 3D boundary layer equation is 
solved, the initial solutions along the line AB and AC should be given in advance by some ways. 
Then in block 1, we apply GDQ in all the spatial directions. Using the same fashion as used in 
a single domain, the boundary layer solution in Block 1 (AGOE) including the line EO and GO 
can be obtained quickly and accurately. After that, there are two ways to march the solution. 
The first way is shown in Figure 6(a). With the solution in the line GO and the initial solution 
in the line GB, the boundary layer solution can be obtained by marching first to Block 2 (GBFO), 
then to Block 3 (EOHC), and finally to Block 4 (OFDH). The second way is shown in Figure 
6(b). The boundary layer solution can be marched first to Block 2 (EOHC), then to Block 3 
(GBFO), and finally to Block 4 (OFDH). It seems that the multi-domain GDQ-GIQ approach 
combines the marching capabilities of low order methods with the potential for accuracy of 
the GDQ scheme. 
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CONCLUSIONS 
The global methods of generalized differential quadrature (GDQ) and generalized integral 
quadrature (GIQ) are applied to solve three-dimensional, laminar boundary layer equations. 
GDQ scheme is applied to discretize the derivatives in all the spatial directions, and GIQ scheme 
is used to approximate the integral derived from the integration of continuity equation. After 
special discretization, the resultant set of ordinary differential equations are solved by using the 
4-stage Runge-Kutta scheme. Application of GDQ-GIQ approach to simulate a test problem 
demonstrated that accurate numerical results can be achieved using just a few grid points. 
Although application of GDQ scheme in all the spatial directions is demonstrated in the paper, 
it can be combined with low order finite difference schemes to enable a space-marching strategy. 
Furthermore, a multi-domain GDQ-GIQ approach is expected to be developed, which combines 
the marching capabilities of low order methods with the potential for accuracy of GDQ scheme. 
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